Stanford University
x
, x + z
where z is all covariatesx
on y
weighted by the propensity scorelm(x ~ z)
for the propensity score model.wt_ate()
with .fitted
and .sigma
; transforms using dnorm()
to get on probability-like scale.exposure ~ confounders
wt_ate()
smkintensity82_71
) affect weight gain among lighter smokers?exposure ~ confounders
wt_ate()
wt_ate()
# A tibble: 1,162 × 74
seqn qsmk death yrdth modth dadth sbp dbp sex
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct>
1 235 0 0 NA NA NA 123 80 0
2 244 0 0 NA NA NA 115 75 1
3 245 0 1 85 2 14 148 78 0
4 252 0 0 NA NA NA 118 77 0
5 257 0 0 NA NA NA 141 83 1
6 262 0 0 NA NA NA 132 69 1
7 266 0 0 NA NA NA 100 53 1
8 419 0 1 84 10 13 163 79 0
9 420 0 1 86 10 17 184 106 0
10 434 0 0 NA NA NA 127 80 1
# ℹ 1,152 more rows
# ℹ 65 more variables: age <dbl>, race <fct>, income <dbl>,
# marital <dbl>, school <dbl>, education <fct>, …
lm()
with wait_minutes_posted_avg
as the outcome and the confounders identified in the DAG.augment()
to add model predictions to the data framewt_ate()
, calculate the weights using wait_minutes_posted_avg
, .fitted
, and .sigma
05:00
lm(x ~ 1)
) or use mean and SD of x
wt_ate(.., stabilize = TRUE)
does this all!03:00
03:00
lm(
wait_minutes_actual_avg ~ wait_minutes_posted_avg,
weights = swts,
data = wait_times_swts
) |>
tidy() |>
filter(term == "wait_minutes_posted_avg") |>
mutate(estimate = estimate * 10)
# A tibble: 1 × 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 wait_minutes_posted_… 2.39 0.0659 3.63 4.93e-4